Correction of High-Order BDF Convolution Quadrature for Fractional Feynman–Kac Equation with Lévy Flight

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Convolution quadrature for the wave equation with impedance boundary conditions

We consider the numerical solution of the wave equation with impedance boundary conditions and start from a boundary integral formulation for its discretization. We develop the generalized convolution quadrature (gCQ) to solve the arising acoustic retarded potential integral equation for this impedance problem. For the special case of scattering from a spherical object, we derive representation...

متن کامل

Application of high-order spectral method for the time fractional mobile/immobile equation

In this paper, a numerical efficient method is proposed for the solution of time fractional mobile/immobile equation. The fractional derivative of equation is described in the Caputo sense. The proposed method is based on a finite difference scheme in time and Legendre spectral method in space. In this approach the time fractional derivative of mentioned equation is approximated by a scheme of ord...

متن کامل

Application of fractional-order Bernoulli functions for solving fractional Riccati differential equation

In this paper, a new numerical method for solving the fractional Riccati differential  equation is presented. The fractional derivatives are described in the Caputo sense. The method is based upon  fractional-order Bernoulli functions approximations. First, the  fractional-order Bernoulli functions and  their properties are  presented. Then, an operational matrix of fractional order integration...

متن کامل

Fast convolution quadrature for the wave equation in three dimensions

This work addresses the numerical solution of time-domain boundary integral equations arising from acoustic and electromagnetic scattering in three dimensions. The semidiscretization of the time-domain boundary integral equations by Runge-Kutta convolution quadrature leads to a lower triangular Toeplitz system of size N . This system can be solved recursively in an almost linear time (O(N logN)...

متن کامل

Convolution quadrature time discretization of fractional diffusion-wave equations

We propose and study a numerical method for time discretization of linear and semilinear integro-partial differential equations that are intermediate between diffusion and wave equations, or are subdiffusive. The method uses convolution quadrature based on the second-order backward differentiation formula. Second-order error bounds of the time discretization and regularity estimates for the sol...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Scientific Computing

سال: 2020

ISSN: 0885-7474,1573-7691

DOI: 10.1007/s10915-020-01331-9